top of page

Una ALU debe procesar números usando el mismo formato que el resto del circuito digital. Para los procesadores modernos, este formato casi siempre es la representación del número binario de complemento a dos. Las primeras computadoras usaron una amplia variedad de sistemas de numeración, incluyendo complemento a uno, formato signo-magnitud, e incluso verdaderos sistemas decimales, con diez tubos por dígito.

Las ALU para cada uno de estos sistemas numéricos mostraban diferentes diseños, y esto influenció la preferencia actual por el complemento a dos, debido a que ésta es la representación más simple, para el circuito electrónico de la ALU, para calcular adiciones y sustracciones, etc.

 

La mayoría de las ALU pueden realizar las siguientes operaciones:

  • Operaciones aritméticas de números enteros (adición, sustracción, y a veces multiplicación y división, aunque ésto es más complejo)
  • Operaciones lógicas de bits (AND, NOT, OR, XOR, XNOR)
  • Operaciones de desplazamiento de bits (Desplazan o rotan una palabra en un número específico de bits hacia la izquierda o la derecha, con o sin extensión de signo). Los desplazamientos pueden ser interpretados como multiplicaciones o divisiones por 2.

Un ingeniero puede diseñar una ALU para calcular cualquier operación, sin importar lo compleja que sea; el problema es que cuanto más compleja sea la operación, tanto más costosa será la ALU, más espacio usará en el procesador, y más energía disipará, etc.

Por lo tanto, los ingenieros siempre calculan un compromiso, para proporcionar al procesador (u otros circuitos) una ALU suficientemente potente para calcular rápido, pero no de una complejidad de tal calibre que haga una ALU económicamente prohibitiva. Imagina que necesitas calcular, digamos, la raíz cuadrada de un número; el ingeniero digital examinará las

 

opciones siguientes para implementar esta operación:

 

  1. Diseñar una ALU muy compleja que calcule la raíz cuadrada de cualquier número en un solo paso. Esto es llamado cálculo en un solo ciclo de reloj.
  2. Diseñar una ALU compleja que calcule la raíz cuadrada con varios pasos (como el algoritmo que aprendimos en la escuela). Esto es llamado cálculo iterativo, y generalmente confía en el control de una unidad de control compleja con microcódigo incorporado.
  3. Diseñar una ALU simple en el procesador, y vender un procesador separado, especializado y costoso, que el cliente pueda instalar adicional al procesador, y que implementa una de las opciones de arriba. Esto es llamado coprocesador o unidad de coma flotante.
  4. Emular la existencia del coprocesador, es decir, siempre que un programa intente realizar el cálculo de la raíz cuadrada, hacer que el procesador compruebe si hay presente un coprocesador y usarlo si lo hay; si no hay uno, interrumpir el proceso del programa e invocar al sistema operativo para realizar el cálculo de la raíz cuadrada por medio de un cierto algoritmo de software. Esto es llamado emulación por software.
  5. Decir a los programadores que no existe el coprocesador y no hay emulación, así que tendrán que escribir sus propios algoritmos para calcular raíces cuadradas por software. Esto es realizado por bibliotecas de software.

Las opciones superiores van de la más rápida y más costosa a la más lenta y económica. Por lo tanto, mientras que incluso la computadora más simple puede calcular la fórmula más complicada, las computadoras más simples generalmente tomarán un tiempo largo porque varios de los pasos para calcular la fórmula implicarán las opciones #3, #4 y #5 de arriba.

Los procesadores complejos como el Pentium IV y el AMD Athlon 64 implementan la opción #1 para las operaciones más complejas y la más lenta #2 para las operaciones extremadamente complejas. Eso es posible por la capacidad de construir ALU muy complejas en estos procesadores.

2.4.2.3 SISTEMAS PARA LAS OPERACIONES

bottom of page